
Demonstrating LLM-for-X: Application-agnostic Integration of 
Large Language Models to Support Writing Workflows 

Lukas Teufelberger 
Xintong Liu 
Zhipeng Li 

Department of Computer Science 
ETH Zürich, Switzerland 

Lukas.Teufelberger@inf.ethz.ch 
Xintong.Liu@inf.ethz.ch 
Zhipeng.Li@inf.ethz.ch 

Abstract 
In this demonstration, we show LLM-for-X, a system-wide short-
cut layer that connects any application to backend LLM support 
through a lightweight popup dialog. LLM-for-X provides users with 
quick and easy-to-use LLM assistance without context switching to 
support writing and reading tasks. We show the use of LLM-for-X 
across several applications, such as Microsoft Ofce, VSCode, and 
Adobe Acrobat, which our tool seamlessly connects to the backends 
of OpenAI ChatGPT and Google Gemini. We also demonstrate the 
use of our system inside web apps such as Overleaf. 

CCS Concepts 
• Human-centered computing → Text input. 

Keywords 
Document authoring, Productivity tasks, Large Language Models. 
ACM Reference Format: 
Lukas Teufelberger, Xintong Liu, Zhipeng Li, Max Moebus, and Christian 
Holz. 2024. Demonstrating LLM-for-X: Application-agnostic Integration of 
Large Language Models to Support Writing Workfows. In The 37th Annual 
ACM Symposium on User Interface Software and Technology (UIST Adjunct 
’24), October 13–16, 2024, Pittsburgh, PA, USA. ACM, New York, NY, USA, 
3 pages. https://doi.org/10.1145/3672539.3686757 

1 Introduction 
With the widespread availability of various Large language model 
(LLM) services, many users are now integrating them into author-
ing processes such as writing, editing, and question answering. 
Interaction with LLMs is mainly performed through chat interfaces 
and question & answer dialogs. Users can retrieve information, con-
duct research, and solve their problems [6, 10]. This has made chat 
LLMs a promising alternative to conventional search interfaces [9]. 

LLMs can be the key for next-generation intelligent personal 
assistants to operate as omnipresent personal companions. With 
the prolifc progress in open-source NLP research, there are many 
studies on specialized bots and apps for specifc use cases such as 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for proft or commercial advantage and that copies bear this notice and the full citation 
on the frst page. Copyrights for third-party components of this work must be honored. 
For all other uses, contact the owner/author(s). 
UIST Adjunct ’24, October 13–16, 2024, Pittsburgh, PA, USA 
© 2024 Copyright held by the owner/author(s). 
ACM ISBN 979-8-4007-0718-6/24/10 
https://doi.org/10.1145/3672539.3686757 

Max Moebus 
Christian Holz 

Department of Computer Science 
ETH Zürich, Switzerland 

Max.Moebus@inf.ethz.ch 
Christian.Holz@inf.ethz.ch 

domain-specifc or task-orientated text generation [8, 11]. Popular 
uses for LLMs include writing [1, 14] and coding assistance [3]. 

Beyond questions & answers, users frequently copy and paste 
content into and out of these chat interfaces to efectively execute 
a variety of tasks inside other applications. This workfow uses the 
clipboard as the interface to transfer textual information back and 
forth across tabs, windows, and applications. For many users, copy 
& paste is thus the dominant interface to bridge LLM assistance 
and the apps they use to complete tasks in a desktop environment. 

For the design of companion systems, developers recommend 
that underlying tasks be disrupted as little as possible [15], as 
these can otherwise signifcantly impair productivity and qual-
ity of work [2, 4]. Even interruptions as small as context switching 
already afect productivity [7] but also one’s mood [5]. 

In this demonstration, we show our interaction prototype LLM-
for-X, a lightweight UI dialog that provides interaction with LLM 
backends for any frontend app. LLM-for-X requires no copy & 
paste or switching windows to LLM frontends, and it allows users 
to almost directly operate on text inside an app. Our system ser-
vice connects text selections and user queries to an LLM by either 
emulating user input to a chat interface (e.g., an existing subscrip-
tion for ChatGPT) and seamlessly transfers responses back into the 
app. Alternatively, LLM-for-X connects to LLM backend APIs to 
retrieve responses. In both cases, our approach minimizes the num-
ber of needed steps, allowing users to focus on a task within an app 
without context switching. See the full manuscripts for details [12]. 

2 Interacting through LLM-for-X 
Figure 1 shows a series of interaction scenarios that are facilitated 
by LLM-for-X. Users summon LLM-for-X’s dialog via Alt + 1 as a 
shortcut and type in an LLM query for quick execution. If they had 
selected text inside an app beforehand, this is used as the basis for 
the LLM query. Our dialog presents the LLM response in a preview 
feld with before and after highlighting as useful. Users can also 
invoke shortcuts to execute frequently used operations instead. 
Finally, pressing TAB lets the LLM response fow back into the app 
from within LLM-for-X had been triggered. While our interaction 
fow is optimized for quick access and keyboard use, all options are 
also available via mouse use. 

The visual design if LLM-for-X’s popup is lightweight to mini-
mize distraction from the foreground app. LLM-for-X’s UI has three 
main elements: query input feld (which is in focus when the menu 
appears), suggested actions (chosen based on popular use-cases of 
ChatGPT [13], accessible via shortcuts), and the preview output 

https://orcid.org/0009-0005-7758-0503
https://orcid.org/0000-0002-6586-7065
https://orcid.org/0000-0001-6602-0176
https://orcid.org/0000-0003-3414-7142
https://orcid.org/0000-0001-9655-9519
https://doi.org/10.1145/3672539.3686757
https://doi.org/10.1145/3672539.3686757
mailto:Christian.Holz@inf.ethz.ch
mailto:Max.Moebus@inf.ethz.ch
mailto:Zhipeng.Li@inf.ethz.ch
mailto:Xintong.Liu@inf.ethz.ch
mailto:Lukas.Teufelberger@inf.ethz.ch
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3672539.3686757&domain=pdf&date_stamp=2024-10-13


UIST Adjunct ’24, October 13–16, 2024, Pitsburgh, PA, USA Teufelberger et al. 

1 2 3

4 5 6

1 2

3 4

a

b

c

Figure 1: LLM-for-X walk-through. (a) iterating on LLM re-
sponses, (b) coding with dif view, (c) full menu layout in 
context of writing assistance. 

feld for LLM responses, where changes are color-highlighted. The 
latter can be navigated with Page Up/Page Down or the scrollbar, 
while typing will modify the query prompt. 

3 Implementation 
LLM-for-X’s implementation comprises an operating system (OS)-
level background service and a browser extension. The OS service 
produces its prompt menu UI on demand, inspects selected content 
inside native apps, retrieves surrounding context for context, inserts 
responses, and communicates with LLM backend APIs. The browser 
extension inspects web page contents for selection and inserts 

responses in web pages. It also has the capability of simulating user 
interaction with chat-based LLM services as a way to interface with 
LLM services without requiring a dedicated subscription or paying 
on a per-request level. 

LLM-for-X’s prompt menu is the main interactive and user-
facing element, confgured by our background service. We imple-
mented LLM-for-X to run on Windows 10 and higher. It supports 
Google Chrome or Microsoft Edge through its extension API. If sup-
port for native apps is not needed, LLM-for-X also runs exclusively 
as a browser extension for use inside browser tabs. This makes it 
compatible with all platforms that fully support Chrome or Edge 
and extensions without requiring a native component. 
OS service Our background app is implemented in C# using .net 
APIs and registers a system-level keyboard hook to monitor global 
keyboard shortcuts. When a shortcut is detected, our native app 
extracts application details and text selection to prepare the prompt. 
Native interface Our implementation uses the UI Automation API 
(UIA) on Windows to access UI components and text contents as 
part of the Microsoft Accessibility API. It additionally obtains the 
window title and process name of the foreground application to 
provide additional context for the LLM query. 
Insert LLM responses Our implementation emulates direct user input 
into the control to allow responses to fow back via the clipboard. 
This way, the input operation enters into the foreground applica-
tion’s undo stack and is treated like any other input. 
Web app interface If the browser is in the foreground, our extension 
extracts the selected text and surrounding content from the page 
and later performs text insertion. Our extension is implemented in 
JavaScript and uses the DOM API for these operations. 
LLM interface. LLM-for-X currently supports ChatGPT, Mistral, and 
Gemini. Because these three implement similar chat interfaces, our 
browser extension injects user input following a query through our 
popup, obtains the response from the LLM via the chat answer, and 
transfers it to our prompt dialog. This provides users of our system 
the direct use of LLM assistance without the need for manual copy 
& paste or context switching between windows or applications. 

Alternatively, LLM-for-X also supports direct interfacing with 
LLM APIs. This requires a dedicated API subscription and incurs 
query-specifc charges for each use, but it allows for more fexibility 
over query types and produces faster responses. 

4 Preliminary evaluation 
We evaluated LLM-for-X on authoring, reading, and coding tasks 
with 14 participants, comparing their performance using either 
LLM-for-X or ChatGPT 3.5 as the Interface . The tasks include 
summarizing, editing, composing, reading, and coding. Participants 
completed all three tasks for one condition, took a break, and re-
peated a secondary instantiation of the tasks in the second condition. 
Conditions were counterbalanced. An experimenter introduced the 
study, answered questions, and verifed task outcomes. 

Results. Participants were signifcantly faster (� = −2.18, � < 0.05) 
during the editing task using LLM-for-X (� = 31.71, �� = 19.04) 
than when using ChatGPT (� = 51.14, �� = 32.50). Participants 
expressed that they felt more efcient when conducting the tasks 
with LLM-for-X, because it eliminates the need for context switch-
ing. Please see our full analysis for more details [12]. 



Demonstrating LLM-for-X: Application-agnostic Integration of Large Language Models UIST Adjunct ’24, October 13–16, 2024, Pitsburgh, PA, USA 

5 Conclusion 
Through a series of application examples and tasks, this demonstra-
tion has showcased the beneft of application-agnostic integration 
of LLM services. Our shortcut interface allows users to avoid con-
text switches and obtain LLM assistance in place. 

References 
[1] Tamara Babaian, Barbara Grosz, and Stuart Shieber. 2002. A Writer’s Collabora-

tive Assistant. International Conference on Intelligent User Interfaces, Proceedings 
IUI (06 2002). https://doi.org/10.1145/502716.502722 

[2] Carey D Chisholm, Amanda M Dornfeld, David R Nelson, and William H Cordell. 
2001. Work interrupted: a comparison of workplace interruptions in emergency 
departments and primary care ofces. Annals of emergency medicine 38, 2 (2001), 
146–151. 

[3] Github. 2024. Github Copilot. https://github.com/features/copilot Accessed: 
30-03-2024. 

[4] Sophie Leroy, Aaron M Schmidt, and Nora Madjar. 2020. Interruptions and task 
transitions: Understanding their characteristics, processes, and consequences. 
Academy of Management Annals 14, 2 (2020), 661–694. 

[5] André N Meyer, Laura E Barton, Gail C Murphy, Thomas Zimmermann, and 
Thomas Fritz. 2017. The work life of developers: Activities, switches and perceived 
productivity. IEEE Transactions on Software Engineering 43, 12 (2017), 1178–1193. 

[6] Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christoforos Nalmpantis, Ram 
Pasunuru, Roberta Raileanu, Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu, Asli 
Celikyilmaz, et al. 2023. Augmented language models: a survey. arXiv preprint 
arXiv:2302.07842 (2023). 

[7] Bryan Min, Matthew T Beaudouin-Lafon, Sangho Suh, and Haijun Xia. 2023. 
Demonstration of Masonview: Content-Driven Viewport Management. In Ad-
junct Proceedings of the 36th Annual ACM Symposium on User Interface Soft-
ware and Technology (, San Francisco, CA, USA,) (UIST ’23 Adjunct). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 60, 3 pages. 

https://doi.org/10.1145/3586182.3615827 
[8] OpenAI. 2024. Introducing GPTs. https://openai.com/blog/introducing-gpts 

Accessed: 30-03-2024. 
[9] Filip Radlinski and Nick Craswell. 2017. A theoretical framework for conversa-

tional search. In Proceedings of the 2017 conference on conference human informa-
tion interaction and retrieval. 117–126. 

[10] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, 
Eric Hambro, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. 2024. 
Toolformer: Language models can teach themselves to use tools. Advances in 
Neural Information Processing Systems 36 (2024). 

[11] Shahab Saquib Sohail, Faiza Farhat, Yassine Himeur, Mohammad Nadeem, Dag 
Øivind Madsen, Yashbir Singh, Shadi Atalla, and Wathiq Mansoor. 2023. Decoding 
ChatGPT: A taxonomy of existing research, current challenges, and possible 
future directions. Journal of King Saud University - Computer and Information 
Sciences 35, 8 (2023), 101675. https://doi.org/10.1016/j.jksuci.2023.101675 

[12] Lukas Teufelberger, Xintong Liu, Zhipeng Li, Max Moebus, and Christian Holz. 
2024. LLM-for-X: Application-agnostic Integration of Large Language Models to 
Support Personal Writing Workfows. arXiv:2407.21593 [cs.HC] https://arxiv. 
org/abs/2407.21593 

[13] Jiayin Wang, Weizhi Ma, Peijie Sun, Min Zhang, and Jian-Yun Nie. 2024. 
Understanding User Experience in Large Language Model Interactions. 
arXiv:2401.08329 [cs.HC] 

[14] Writeful. 2024. TexGPT: Harness the power of ChatGPT in Overleaf. https:// 
blog.writefull.com/texgpt-harness-the-power-of-chatgpt-in-overleaf/ Accessed: 
30-03-2024. 

[15] Julie S Zide, Maura J Mills, Comila Shahani-Denning, and Carolyn Sweetapple. 
2017. Work interruptions resiliency: toward an improved understanding of em-
ployee efciency. Journal of Organizational Efectiveness: People and Performance 
4, 1 (2017), 39–58. 

https://doi.org/10.1145/502716.502722
https://github.com/features/copilot
https://doi.org/10.1145/3586182.3615827
https://openai.com/blog/introducing-gpts
https://doi.org/10.1016/j.jksuci.2023.101675
https://arxiv.org/abs/2407.21593
https://arxiv.org/abs/2407.21593
https://arxiv.org/abs/2407.21593
https://arxiv.org/abs/2401.08329
https://blog.writefull.com/texgpt-harness-the-power-of-chatgpt-in-overleaf/
https://blog.writefull.com/texgpt-harness-the-power-of-chatgpt-in-overleaf/

	Abstract
	1 Introduction
	2 Interacting through LLM-for-X
	3 Implementation
	4 Preliminary evaluation
	5 Conclusion
	References



